
.. .

ICASE
A MULTI-COLOR SOR METHOD

FOR PARALLEL COMPUTATION

Loyce Adams

and

James M. Ortega

Report No. 82-9

April 8, 1982

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the

UNIVERSITIES SPACE @a RESEARCH ASSOCIATION
(N A S A - C R - 1 8 5 8 0 6) A MULTI-COLOR SOR HETHOO ~ a 9 - 7 1 3 4 5
FOR PARALtfL COMPUTATION (I C A S E) €4 p

Uncl as
0 0 / 6 2 0224365

A MULTI-COLOR SOR METHOD FOR PARALLEL COMPUTATION

Loyce Adams

University of Virginia

James M. Ortega

University of Virginia

ABSTRACT

This paper considers a generalization of the classical red/black

ordering of grid points for f ini te difference or f i n i t e element discret i -

z a t i o n s shown t o be effective i n the implementation of the SOR i terat ion

method on vector or parallel computers.

orderings for different discretizations and implementation on the CDC

Cyber 203/205 and the Finite Element Machine i s discussed.

Examples are given o f various

-

This research was sponsored by NASA Contract No. NAS1-46.
of the second author was partially supported under NASA Contract No.
NAS1-16394 while he was in residence a t ICASE, NASA Langley Research
Center, Hampton, VA 23665.

The work

A Multi-Color SOR Method for Parallel Computation
L. Adarns a n d 3 Ortega

_ - - -

1. Introduction

We are concerned in this paper with the solution of a sparse nxn

linear system of equations

ALL = e (1.1)

by iterative methods, especially SOR type methods, on parallel arrays or

vector computers. As opposed to the Jacobi iteration, which has rather

ideal properties for parallel computation, the SOR method Is essentially a

sequential method. However, several authors te.g. Hayes [19741, Lam-

biotte r19751) have observed that i f (1.1) arises from a five-point finite

difference discretization of Poisson's equation and the equations are

ordered according to the classical Red/Black partitioning of the grid

points then an SOR sweep may be carried out. in essence, by two

JacoDi sweeps, one on the equations corresponding to the red points

and one for the equations corresponding to the black points. Thus, In

this case, the SOR method can be effectively implemented on vector or

paralloi computers.

Tnis strategy does not work, however, for higher order finite differ-

ence or finite element discretizations or for more general elliptic equa-

tions which contain mixed partial derivative terms. In these cases. it ls

necessary to generalize the Red/Black partitioning of the grid points to a

"multi-color" partitioning: for example, a three color partitioning, say

Had/Black/Green. might give the desired result. In general. the number

of colors necessary wil l depend on the connectivity pattern of the grid

points. If p colors are used. an SOR sweep can be implemented by p

Jacobi sweeps, one for each set of equations associated with a given

color. For vector computers. this reduces the effective vector length to

O(n/p) while for parallel arrays it is necessary that each processor hold

a multiple of p equations. This multiple wil l be determined by the par-

ticular discretization. Clearly, ?here will be a polnt of dlminlshlng returns

as p Increases but for most differential equations and dlscretizations of

interest it seems that no more than 6 colors will suffice and for the

2

size of n we have in mind (n - 10,000 + 1, the multi-color strategy can

be very effective.

We note that multi-color orderings for SOR have been used before

(see Young [19711) but, to the best of our knowledge, have not been

used in the context of parallel computation.

in the next section, we describe the method in more detail and in

Section 3 we discuss some of the implementation questions for both

vector computers and parallel arrays. We do not address the many

other problems in the successful use of the SOR iteration, especially the

pronlem of determining an optimum relaxation parameter.

2. Multi-Color Orderings

For concreteness, we consider first an elliptic equation of the form

u t a u t u = f (2.1)

on the unit square with Dirichlet boundary conditions where a is a given

constant and f is a given function of x and y. We discretite (2.1) with

the usual second-order finite difference approximations (see. e.g.. For-

sythe and Wasow ll9601) which give the difference equations

xx XY YY

where h Is the spacing between grid points, i,j=l..N where h(N+l)=l, u..
I I

denotes the approximate solutlon at the i,jth grid point, and f ..=f(lh.jh).

Now partition the grid points by the Red/Black scheme, as indicated by

Figure 1, and then number the grid points In each class from left to

right, bottom to top.

11

3

0 0 0 0

R B R B

I .

0 0 0 0

B R B R

0 0 0 0

R B R B

0 0 0 0

B R B R

Figure 1. Red/Black Ordering

If a=O, so that (2.1) is just Poisson‘s equation, then it is well-known

(see e.g. Young [19711) that the difference equations (2.2) may be written

in the partitioned matrix form

(2.3)

where D is a diagonal matrix and ur and ub denote the vectors of unk-

nowns associated with the red and black grid points respectively. The

Gauss-Seidel iteration for (2.3) may be written as

(2.4)

and each part of (2.4) can then be effectively implemented in a parallel

fashion, with the introduction of the SOR parameter causlng no problem.

If a PC 0. the form (2.3) of the difference equations is still valid

although D is no longer a diagonal matrix and the Gauss-Seidel step

’ (2.4) is no longer easily implementable in a parallel fashion. The prob-

lem is that unknowns corresponding to red points are coupled to each

other in (2.3) (and black points to each other also) whereas when a=O .
they completely uncouple. Thus we wish to introduce another partltionlng

4

of the grid points for which unknowns within each subset of the parti-

rioning are uncoupied. If we consider the grid point stencil for (2.21,

shown in Figure 2,

0-0-0

R B R

Figure 2. Stencil for (2.2)

with the Red/Biack ordering, we see that the center Red point is con-

nected to the Red points at the four corners. If . however. we use four

subsets of grid points, labeled red, black, white. orange, we can ensure

that each center point connects with only points of different colors. A

suitable coloring pattern for this is illustrated in Figure 3.

0 0 0 0 0 0 0 0

R 6 W 0 R B W 0

0 0 0 0 0 0 0 0

W 0 R B W 0 R B

0 0 0 0 0 0 0 0

R 6 W 0 R 6 W 0

0 0 0 0 0 0 0 0

W 0 R B W 0 R B

Figure 3. Four color partitioning of the gridpoints

In this case, the system (2.2) can be written in a partitioned form

analogous to (2.31 as

5

U
D l B12 '13 r-r9

- ' 2 ' 2 3 ' 2 4 yb

B32 '3 B34 % - 4 v
' 4 2 '43 D4 uO -

' f -r
f -b

f
-0 -

(2.5)

where D , , D 2 , D 3 , and D4 are diagonal matrices. The Gauss-Seidel

iteration in terms of (2.5) is then

(2.6)

with similar equations for c1 and u k + l .

(2.6) is easily implementable on vector or parallel architectures.

Since the Di are diagonal.
0

A variety of other connectivity patterns arise from either finite differ-

ence or finite element discretizations. Two of the more common are

illustrated by their stencils in Figure 4,

Figure 4. Common finite element stencils

in which (a) arises, for example, from finite element discretization by

, ' piecewise linear functions over triangular subregions and (b) by piecewise

quadratic functions. In case (a). three colors are necessary and suffi-

cient to achieve the desired decoupiing while in case (b) six colors are

required. The coloring patterns for the two cases are Illustrated In

6

Figure 5

0 0 0

6 G R

0 0 0

G R B

0

G

0

0

0

G

0

P

0

G

0 0 0 0

R B G Y

0

R

0

B

0

R

0

6

0

R

0

B

0 0

G R

0 0

P 6

0 0

G R

0 0

Y 6

0 0

G R

0 0

0 6

(b)

0

G

0

Y

0

G

0

0

0

G

0

P

0

R

0

B

0

R

0

B

0

R

0

G

(a)
Figure 5. Three and six color partitions

In both cases, the color patterns repeat beyond the subregions illus-

trated.

A variety of other examples could be given. Provided that the

domain of the differential equation is a rectangle or other regular two or

three dimensional region and the discretization stencil is repeated at

each grid, it is usually evident how to color the grid points to achieve

the desired result. However, for arbitrary discretitations and/or irregular

regions there is at present no algorithm to carry out the coloring.

3. Implementation Considerations

We discuss briefly in this section some of the implementation con-

siderations of the multi-color SOR method on vector computers and

parallel arrays. For concreteness, we will use the CDC CYBER 2031205

as an example of the former and the Finite Element Machine at NASA's

Langley Research Center as an example of the latter.

On the CYBER 203/205, vectors consist of contiguous storage loca-

tlons and the efficiency of the vector operations ls strongly dependent on
vector length. Maximum efficiency is achieved for very long vectors.

7

For vectors of length 1000 around 90% efficiency is obtained. but this

drops to anproximately 50% or less for vectors of length 100 and less

than 10% for length 10. Hence. we would like to keep vector lengths

on the order of 1000 or more whenever possible.

Consider, for example, the difference equations (2.2) and suppose

that h=.01 so that N-99 and n=N2=104. The implementation of Jacobi's

method on this problem can be done in a straightforward way using

vectors of length N. corresponding to the unknowns in each row of grid

points. It is desirable, however, to work with vectors of length order n

and it is possible to achieve this by considering the boundary values to

be unknowns and ordering all the grid points, including the boundary

points, from left to right, bottom IO top and tnen appiying the Jacobi

iteration to the corresponding vector of length (N+2I2 of unknowns. The

boundary values, of course, cannot be changed by the iteration and this

is prevented by use of the control vector feature on the 2031205 which

allows suppresslon of storage of updated values into the boundary loca-

tions. (See, e.g. Lambiotte [19751 or Ortega and Voigt [19771 for more

details on this procedure.) Since the calculation of new values

corresponding to the boundary points is superfluous, this introduces an

inefficiency of approximately 4% for N=99 but allows almost full efficiency

of the vector operations.

For the Gauss-Seidel or SOR method for (2.2) we use the four-color

ordering of Figure 3. and order the unknowns into four vectors

corresponding to the grid points associated with the four colors. The

matrix-theoretic description (2.6) of the Gauss-Seidel Iteration is then

implemented by four separate Jacobi sweeps. one for each color. As

above, the boundary values are considered as unknowns and then

updated values suppressed on storage. Since the vector lengths are

now on the order of 2500, the corresponding vector operations wil l run

, ' at about 95% efficiency. The introduction of the SOR parameter causes

no difficulty.

We turn now to parallel arrays. The Finite Element Machine Is a

prototype array of 36 microprocessors, arranged In a 6x6 grid. Each

processor is connected to eight nearest neighbors, as Illustrated in

8

Figure 6.

Figure 6. Processor Interconnections on the Finite Element Machine

and there is also a global bus that connects all processors. Further

details, which do not concern us here, may be found in Jordan I19781

and the references therein.

Our primary goal in the implementation of the multi-color SOR
method on the Finite Element Machine, or on a similar array with

perhaps many more processors but limited processor to processor inter-

connections, is to keep as many processors as possible running at a

given time. This. in turn, requires maximum use of the processor inter-

connections and minimum use of the global bus since contention for the

bus will tend to introduce delays which cause processors to be idle.

Perhaps the primary consideration in the implementation is to ensure

that each processor holds at least as many unknowns as a certain mul-

tiple of the number of colors where this multiple is the number of rows

above the center point in the gridpoint interconnection stencil. Thus. for

example, if we consider the gridpoint interconnection stencil of Figure

4(a) and the corresponding three color ordering of Figure 5ta). we would

asslgn a minimum of 3 unknowns to each processor as illustrated in

Figure 7(a). Similarly, for the stencil of Figure 4(b) and the

corresponding six color ordering of Figure 5(b), we would assign a

minimum of 12 unknowns to each processor as illustrated in Figure 7(b).

9

P3 G R] P m t 3 [B G R1 . . .

P2 1G R Bj Pmt2 [G R Bl . . .

P m t l IR B GI . . .
Figure 7 (a) . Processor Assignment

IG R G R G X1 IG R G R G R1
I P B Y B O B I . . . ‘ m t 2 P2 [P B Y B 0 B)

Figure 7 (b) . Processor Assignment

In the simplest case of 36 processors and 108 grid points, with 108

corresponding unknowns, the assignment scheme of Figure 7ta) would be

sufficient and the SOR method would be implemented by Jacobi opera-

tions, first on all the Red points, then the Black, then the Green. To

carry out these Jacob1 operations, current values of neighboring unk-

nowns would be obtained either from the processor itself O r a neighbor

processor and no use of the global bus is necessary. Known boundary

values would be stored in the processors which needed them. In any

problem of interest, however. there would almost certainly be many more

grid points and unknowns than processors. For the situation discussed

above with three colors. we would assign unknowns in multiples of three

to the processors. Similarly, for the grid point stencil of Figure 4(b)

and corresponding six color pattern of Figure 5(b). we would assign unk-

nowns in multiples of 12 to each processor.

10

The above assignment strategy would allow each processor to run

witnout waiting except for two problems. synchronization and Convergence.

Consider a Jacobi operation on all the unknowns of a given color. The

processors may complete their work on this operation in different times

due to a number of factors: slightly different clock times in the proces-

sors; different memory access times, especially for those processors con-

rarniriy unknowns connected to boundary values; different numbers of

unmowns assigned to processors and so on. To compensate for these

possible differences in processing times, the computation can be syn-

chronized by having each processor set a flag when It is done with its

calcuiation on the current Jacobi operation and then wait for all other

processors to complete. This synchronization. of course, introduces

delays. Alternately. the processors can run asynchronously. In this

case. the numerical iterations will tend to deviate from the true

mathematical iteration, although the consequences of this may even be

beneficial. (See, e.9. Baudet [I9781 and the references therein for

further discussion of asynchronous iterative methods.)

It is, of course. necessary to check for convergence of the Iterative

process. At the end of each SOR Iteration, each processor can monitor

the convergence of the unknowns assigned to It, probably by comparing

the current and previous iterates. When the convergence criterion has

been satisfied for all unknowns assigned to a given processor. that pro-

cessor must continue the Iteration until the convergence Criterion is

satisfied in all processors. Hence, the whole process will not terminate

until all unknowns have satisfied the convergence criterion and towards

the end of the process a portion of the processors may be doing

unnecessary work. This seems to be an unavoidable inefficiency.

4. Summary and Conclusions

The multi-color SOR method described herein seems promising for
' vector and array processors although practical experience to date has

been limited to a few numerical experiments on a four-processor version

of the Finite Element Machine. It faces the usual difficulty wlth the SOR
method of obtaining suitably good values of the overrelaxatlon parameter

and for most applications of current interest for which a vector computer

or large array would be used, there is little theory to help in this

choice. For irregular regions, there is also the problem of processor

assignment and coloring of the grid points; the processor assignment

problem has been addressed by various authors (see. e.g. Bokhari 119791

and Gannon 119801) but not in conjunction with the coloring problem.

12

REFERENCES

Eaudet, G. [I 9781. "Asynchronous Iterative Methods for Multiprocessors,'
J. Assoc. Comp. Mach. 25. pp. 226-224.

Bokhari. S . 119791. 'On the Mapping Problem,' Froc. In?. Conf. on Par.
Proc, pp. 239-248.

Forsythe. G. and Wasow, W. 119601. Finite Difference Methods for Partial
Differential Equations, John Wiley. New York.

Gannon. D. [19811. 'On Mapping non-uniform P.D.E. Structures and
Algorithms onto Uniform Array Architectures.' Proc. 1987 In?.
Conf. Par. Proc., pp. 100-105.

Hayes, L. [I 9741. "Comparative Analysis of Iterative Techniques for Solv-
ing Laplace's Equation on the Unit Square on a Parallel Pro-
cessor,' M.S. Thesis, Department of Mathematics. University of
Texas. Austin.

Jordan, H. [19781. 'A Special Purpose Architecture for Finite Element
Analysis.' Proc. 1978 Int. Conf. on Par. Proc., pp. 263-266.

Lambiotte. J. I19751. "The Solution of Linear Systems of Equations on a
Vector Computer," Ph.D. Dissertation, University of Virginia.

Ortega. J. and Voigt, R. 119771. 'Solutions of Partial Differential Equa-
tions on Vector Computers', Proc. 7977 Army Num. Anal. Conf..
pp. 475-526.

Young, D. 119711. Iterative Solution of Large Linear Systems, Academic
P r e s s , New York. pp. 427-428.

